3D Bioplotter Research Papers

Displaying all papers about Hyaluronic Acid (14 results)

3D-Printed Soft Membrane for Periodontal Guided Tissue Regeneration

Materials 2023 Volume 16, Issue 4, Article 1364

Objectives: The current study aimed to perform an in vivo examination using a critical-size periodontal canine model to investigate the capability of a 3D-printed soft membrane for guided tissue regeneration (GTR). This membrane is made of a specific composition of gelatin, elastin, and sodium hyaluronate that was fine-tuned and fully characterized in vitro in our previous study. The value of this composition is its potential to be employed as a suitable replacement for collagen, which is the main component of conventional GTR membranes, to overcome the cost issue with collagen. Methods: Critical-size dehiscence defects were surgically created on the buccal…

3D bioprinting of multilayered scaffolds with spatially differentiated ADMSCs for rotator cuff tendon-to-bone interface regeneration

Applied Materials Today 2022 Volume 27, Article 101510

Regeneration of the gradient structure of the tendon-to-bone interface is still a significant clinical challenge. This study reports a novel therapeutic method combining three-dimensional (3D) bioprinting and melt electrospinning writing techniques to regenerate a functional tendon-to-bone interface. We generated biomimetic multilayered scaffolds with 3D-bioprinted pre-differentiated autologous adipose-derived mesenchymal stem cells (ADMSC), which recapitulated compositional and cellular structures of the interface. The hydrogel-based bioinks offered high cell viability and proliferative capability for rabbit ADMSCs. The hydrogels with pre-differentiated (into tenogenic, chondrogenic, and osteogenic lineages) or undifferentiated rabbit ADMSCs were 3D-bioprinted into zonal-specific constructs to mimic the structure of the tendon-to-bone interface.…

Tunable Crosslinking, Reversible Phase Transition, and 3D Printing of Hyaluronic Acid Hydrogels via Dynamic Coordination of Innate Carboxyl Groups and Metallic Ions

ACS Applied Bio Materials 2021 Volume 4, Issue 3, Pages 2408-2428

This article reports tunable crosslinking, reversible phase transition, and three-dimensional printing (3DP) of hyaluronic acid (HyA) hydrogels via dynamic coordination of Fe3+ ions with their innate carboxyl groups for the first time. The concentrations of Fe3+ and H+ ions and the reaction time determine the tunable ratios of mono-, bi-, and tridentate coordination, leading to the low-to-high crosslinking densities and reversible solid–liquid phase transition of HyA hydrogels. At the monodentate-dominant coordination, the liquid hydrogels have low crosslinking densities (HyA_L). At the mixed coordination of mono-, bi-, and tridentate bonding, the solid hydrogels have medium crosslinking densities (HyA_M). At the tridentate-dominant…

A powerful combination in designing polymeric scaffolds: 3D bioprinting and cryogelation

International Journal of Polymeric Materials and Polymeric Biomaterials 2020 Volume 71, Issue 4, Pages 278-290

Three-dimensional (3D) bioprinting technologies have great attention in different researching areas such as tissue engineering, medicine, etc. due to its maximum mimetic property of natural biomaterials by providing cell combination, growth factors, and other biomaterials. Bioprinting of tissues, organs, or drug delivery systems emerged layer-by-layer deposition of bioinks. 3D bioprinting technique has some complexity such as choice of bioink combination, cell type, growth, and differentiation. In this study, a composite material in 3D bioprinting studies has been developed for biofabrication of the cell carrying scaffolds namely cryogenic scaffolds. Cryogenic scaffolds are highly elastic and have a continuous interconnected macroporous structure…

A tri-component knee plug for the 3rd generation of autologous chondrocyte implantation

Scientific Reports 2020 Volume 10, Article number: 17048

Here, we report a newly designed knee plug to be used in the 3rd generation of Autologous Chondrocyte Implantation (ACI) in order to heal the damaged knee cartilage. It is composed of three components: The first component (Bone Portion) is a 3D printed hard scaffold with large pores (~ 850 µm), made by hydroxyapatite and β-tricalcium phosphate to accommodate the bony parts underneath the knee cartilage. It is a cylinder with a diameter of 20 mm and height of 7.5 mm, with a slight dome shape on top. The plug also comprises a Cartilage Portion (component 2) which is a 3D…

3D printing of silk fibroin-based hybrid scaffold treated with platelet rich plasma for bone tissue engineering

Bioactive Materials 2019 Volume 4, Pages 256-260

3D printing/bioprinting are promising techniques to fabricate scaffolds with well controlled and patient-specific structures and architectures for bone tissue engineering. In this study, we developed a composite bioink consisting of silk fibroin (SF), gelatin (GEL), hyaluronic acid (HA), and tricalcium phosphate (TCP) and 3D bioprinted the silk fibroin-based hybrid scaffolds. The 3D bioprinted scaffolds with dual crosslinking were further treated with human platelet-rich plasma (PRP) to generate PRP coated scaffolds. Live/Dead and MTT assays demonstrated that PRP treatment could obviously promote the cell growth and proliferation of human adipose derived mesenchymal stem cells (HADMSC). In addition, the treatment of PRP…

Design of a new 3D‐printed joint plug

Asia‐Pacific Journal of Chemical Engineering 2019 Volume 14, Issue 6, Article e2360

This paper introduces a kit of parts as a novel three‐dimensional (3D)–printed joint plug, in which each of the parts function cooperatively to treat cartilage damage in joints of the human body (e.g., hips, wrists, elbow, knee, and ankle). Three required and one optional parts are involved in this plug. The first part is a 3D‐printed hard scaffold (bone portion) to accommodate bone cells, and the second is a 3D‐printed soft scaffold (cartilage portion) overlying the bone portion to accommodate chondrocytes. The third part of joint plug is a permeable membrane, termed film, to cover the entire plug to provide…

Bioprinting Schwann cell-laden scaffolds from low-viscosity hydrogel compositions

Journal of Materials Chemistry B 2019 Volume 7, Issue 29, Pages 4538-4551

3D bioprinting techniques have been attracting attention for tissue scaffold fabrication in nerve tissue engineering applications. However, due to the inherent complexity of nerve tissues, bioprinting scaffolds that can appropriately promote the regeneration of damaged tissues is still challenging. This paper presents our study on bioprinting Schwann cell-laden scaffolds from low-viscosity hydrogel compositions including RGD modified alginate, hyaluronic acid and fibrin, with a focus on investigating the printability of hydrogel compositions and characterizing the functions of printed scaffolds for potential use in nerve tissue regeneration. We assessed the rheological properties of hydrogel precursors via temperature, time and shear rate sweeps,…

Mechanically robust cryogels with injectability and bioprinting supportability for adipose tissue engineering

Acta Biomaterialia 2018 Volume 74, Pages 131-142

Bioengineered adipose tissues have gained increased interest as a promising alternative to autologous tissue flaps and synthetic adipose fillers for soft tissue augmentation and defect reconstruction in clinic. Although many scaffolding materials and biofabrication methods have been investigated for adipose tissue engineering in the last decades, there are still challenges to recapitulate the appropriate adipose tissue microenvironment, maintain volume stability, and induce vascularization to achieve long-term function and integration. In the present research, we fabricated cryogels consisting of methacrylated gelatin, methacrylated hyaluronic acid, and 4arm poly(ethylene glycol) acrylate (PEG-4A) by using cryopolymerization. The cryogels were repeatedly injectable and stretchable, and…

3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications

Biofabrication 2018 Volume 10, Number 3, Article 035014

Three-dimensional bioprinting of biomaterials shows great potential for producing cell-encapsulated scaffolds to repair nerves after injury or disease. For this, preparation of biomaterials and bioprinting itself are critical to create scaffolds with both biological and mechanical properties appropriate for nerve regeneration, yet remain unachievable. This paper presents our study on bioprinting Schwann cell-encapsulated scaffolds using composite hydrogels of alginate, fibrin, hyaluronic acid, and/or RGD peptide, for nerve tissue engineering applications. For the preparation of composite hydrogels, suitable hydrogel combinations were identified and prepared by adjusting the concentration of fibrin based on the morphological spreading of Schwann cells. In bioprinting, the…

Short-term hypoxic preconditioning promotes prevascularization in 3D bioprinted bone constructs with stromal vascular fraction derived cells

RSC Advances 2017 Volume 7, Pages 29312-29320

Reconstruction of complex, craniofacial bone defects often requires autogenous vascularized bone grafts, and still remains a challenge today. In order to address this issue, we isolated the stromal vascular fraction (SVF) from adipose tissues and maintained the phenotypes and the growth of endothelial lineage cells within SVF derived cells (SVFC) by incorporating an endothelial cell medium. We 3D bioprinted SVFC within our hydrogel bioinks and conditioned the constructs in either normoxia or hypoxia. We found that short-term hypoxic conditioning promoted vascularization-related gene expression, whereas long-term hypoxia impaired cell viability and vascularization. 3D bioprinted bone constructs composed of polycaprolactone/hydroxyapatite (PCL/HAp) and…

Use of the polycation polyethyleneimine to improve the physical properties of alginate-hyaluronic acid hydrogel during fabrication of tissue repair scaffolds

Journal of Biomaterials Science, Polymer Edition 2015 Volume 26, Issue 7, Pages 433-445

Recently alginate-based tissue repair scaffolds fabricated using 3D printing techniques have been extensively examined for use in tissue engineering applications. However, their physical and mechanical properties are unfavorable for many tissue engineering applications because these properties are poorly controlled during the fabrication process. Some improvement of alginate gel properties can be realized by addition of hyaluronic acid (HA), and this may also improve the ability of cells to interact with the gel. Here, we report improvement of the physical properties of alginate–HA gel scaffolds by the addition of the polycation polyethyleneimine (PEI) during the fabrication process in order to stabilize…

Bioplotting Alginate/Hyaluronic Acid Hydrogel Scaffolds with Structural Integrity and Preserved Schwann Cell Viability

3D Printing and Additive Manufacturing 2014 Volume 1, Issue 4, Pages 194-203

Bioplotting is an emerging freeform scaffold fabrication technique useful for creating artificial tissue scaffolds containing living cells. Simultaneous maintenance of scaffold structural integrity and cell viability is a challenging task. In this article, we present strategies developed to bioplot alginate-based three-dimensional tissue scaffolds containing hyaluronic acid and living Schwann cells for potential use in peripheral nerve tissue engineering. The fabrication platform, upon which the scaffold is created, was coated with the polycation polyethylenimine to immobilize the first layer of the scaffold on the platform. Each layer was then dispensed into a bath containing calcium chloride to cross-link the alginate, polyvinyl…

Novel crosslinked alginate/hyaluronic acid hydrogels for nerve tissue engineering

Frontiers of Materials Science 2013 Volume 7, Issue 3, Pages 269-284

Artificial tissue engineering scaffolds can potentially provide support and guidance for the regrowth of severed axons following nerve injury. In this study, a hybrid biomaterial composed of alginate and hyaluronic acid (HA) was synthesized and characterized in terms of its suitability for covalent modification, biocompatibility for living Schwann cells and feasibility to construct three dimensional (3D) scaffolds. Carbodiimide mediated amide formation for the purpose of covalent crosslinking of the HA was carried out in the presence of calciumions that ionically crosslink alginate. Amide formation was found to be dependent on the concentrations of carbodiimide and calcium chloride. The double-crosslinked composite…